Takes data frame of all samples and returns the dates of individuals first and last sample. Besides that the functions determines if animal is dead based on predefined sample type eg. tissue.
Arguments
- individual_id
Column in the dataframe of all samples containing individual animal identifier code. Defined as
dataframe$column
.- sample_date
Column in the dataframe of all samples containing the date of sample collection. Must be in
Date
format. Defined asdataframe$column
.- sample_type
Column in the dataframe of all samples containing the data on the type (eg. scat, tissue, saliva) of particular sample. Defined as
dataframe$column
.- dead
Single value or vector of different lethal sample types. If no lethal samples are included in the sampledata the dead parameter can be set to
FALSE
(dead =FALSE
). Defaults to "Tissue".
Value
A data frame with four columns and one row for each individual_id
.
Returned data frame columns correspond to individual identification key (ID
),
date of first (FirstSeen
) and last (LastSeen
) sample of individual and
logical (TRUE/FALSE
) value that identifies if the individual is dead (IsDead
).
Examples
anim_timespan(
individual_id = wolf_samples$AnimalRef,
sample_date = wolf_samples$Date,
sample_type = wolf_samples$SType,
dead = c("Tissue")
)
#> ID FirstSeen LastSeen IsDead
#> 1 M10XC 2017-11-16 2017-12-22 FALSE
#> 2 M1J47 2019-08-20 2021-01-07 FALSE
#> 3 M1YP0 2017-01-25 2017-01-25 TRUE
#> 4 M200F 2015-07-27 2018-08-22 FALSE
#> 5 M20AM 2016-08-29 2020-08-02 FALSE
#> 6 M220J 2017-11-10 2018-02-17 FALSE
#> 7 M221C 2018-10-29 2020-05-22 FALSE
#> 8 M228J 2016-09-30 2018-02-09 TRUE
#> 9 M22AM 2017-01-26 2017-08-07 FALSE
#> 10 M273P 2018-01-02 2020-07-22 FALSE
#> 11 M2757 2018-01-05 2018-02-09 FALSE
#> 12 M2772 2017-11-12 2020-09-29 FALSE
#> 13 M28LU 2017-09-18 2021-01-19 FALSE
#> 14 M28TU 2017-12-18 2021-04-23 FALSE
#> 15 M2ALK 2019-01-03 2020-07-08 FALSE
#> 16 M2AM8 2017-04-07 2021-03-23 FALSE
#> 17 M2AXE 2017-12-16 2019-11-06 FALSE
#> 18 M2C1T 2017-10-31 2018-01-26 FALSE
#> 19 M2C8Y 2018-10-30 2018-10-30 TRUE
#> 20 M2ETE 2019-03-20 2019-08-13 FALSE
#> 21 M2EUJ 2019-04-23 2019-08-11 FALSE
#> 22 M2F1L 2019-04-07 2021-03-13 FALSE
#> 23 MSV00E 2019-08-12 2021-03-05 FALSE
#> 24 MSV018 2019-09-12 2019-09-12 FALSE
#> 25 MSV01X 2019-08-28 2019-08-29 FALSE
#> 26 MSV02F 2019-10-07 2019-10-07 TRUE
#> 27 MSV02L 2019-09-15 2019-09-15 TRUE
#> 28 MSV055 2019-12-11 2020-03-24 FALSE
#> 29 MSV05L 2020-01-27 2020-02-15 FALSE
#> 30 MSV0AL 2019-12-11 2021-04-29 FALSE
#> 31 MSV0CK 2019-08-05 2019-12-09 FALSE
#> 32 MSV0FK 2020-01-18 2021-04-15 FALSE
#> 33 MSV0H5 2020-04-10 2021-03-17 FALSE
#> 34 MSV0M6 2020-02-24 2021-04-08 FALSE
#> 35 MSV0P7 2019-11-23 2020-07-17 FALSE
#> 36 MSV0T4 2020-02-07 2020-02-07 TRUE
#> 37 MSV0T7 2019-08-11 2020-02-09 TRUE
#> 38 MSV0TA 2020-01-12 2020-01-12 TRUE
#> 39 MSV0TJ 2019-12-28 2019-12-28 TRUE
#> 40 MSV0UL 2020-07-15 2020-07-15 FALSE
#> 41 MSV0UP 2020-06-10 2021-03-17 FALSE
#> 42 MSV0UT 2020-06-10 2020-06-10 FALSE
#> 43 MSV0UU 2020-06-10 2020-06-10 FALSE
#> 44 MSV0X4 2019-09-03 2019-10-23 TRUE
#> 45 MSV0XT 2020-10-08 2021-04-29 FALSE
#> 46 MSV10T 2020-08-16 2020-08-16 FALSE
#> 47 MSV16T 2021-02-02 2021-02-02 FALSE
#> 48 MSV16U 2021-02-02 2021-02-02 FALSE
#> 49 MSV170 2021-02-02 2021-02-02 FALSE
#> 50 MSV177 2020-04-22 2020-07-11 FALSE
#> 51 MSV17F 2020-11-08 2020-12-04 FALSE
#> 52 MSV17U 2020-09-29 2021-04-29 FALSE
#> 53 MSV180 2020-09-29 2020-09-29 FALSE
#> 54 MSV18C 2020-11-06 2020-11-06 FALSE
#> 55 MSV1C0 2021-02-16 2021-03-30 FALSE
#> 56 MSV1EX 2021-01-18 2021-01-18 FALSE
#> 57 MSV1F5 2021-01-23 2021-01-23 FALSE
#> 58 MSV1F8 2021-02-04 2021-02-04 FALSE
#> 59 MSV1FE 2021-02-10 2021-02-10 FALSE
#> 60 MSV1FJ 2021-02-16 2021-03-07 FALSE
#> 61 MSV1FL 2021-02-17 2021-02-17 FALSE
#> 62 MSV1FT 2021-01-18 2021-02-26 FALSE
#> 63 MSV1KT 2020-10-06 2021-02-16 FALSE
#> 64 MSV1MH 2021-02-25 2021-07-15 FALSE
#> 65 MSV1TM 2020-11-15 2020-11-15 TRUE